GMR KAMALANACA ENERGY LTD

23rd National Award For Excellence in Energy Management

FY-2021-22

A journey towards improved energy performance with approach of sustenance and innovation

Presenting by :

- 1. Saurabh Kumar (AM OS&E)
- 2. Puspahash Mohanty (Manager OS&E)
- 3. Raghunath P (VP Operation & OE)

CONTENTS

- 1. GMR at a glance
- 2. Energy management policy and certificates.
- 3. Energy consumption overview.
- 4. Specific energy consumption last 3 years
- 5. Benchmarking of KPI
- 6. Energy conservation projects in last 3 years
- 7. Innovative project in FY 22
- 8. Renewable energy project
- 9. Environment management
- 10. Green supply chain management
- 11. Best practices –Non energy efficiency
- 12. Energy management System
- 13. Budget allocation.
- 14. Award and accolades.
- 15. Learning from CII

Sardar Vallabhbhai Patel

Deliver the Promise

We value a deep sense of responsibility and self-discipline, to meet and surpass on commitments made

TenAzing & Hillary

Teamwork & Relationships

Going beyond the individual-encouraging boundary less behaviour

Dr. APJ Abdul Kalam

Respect for Individual We will treat others with dignity, sensitivity and bonour

Mahatma Gandhi

Humility We value intellectual modesty and dislike false pride and arrogance

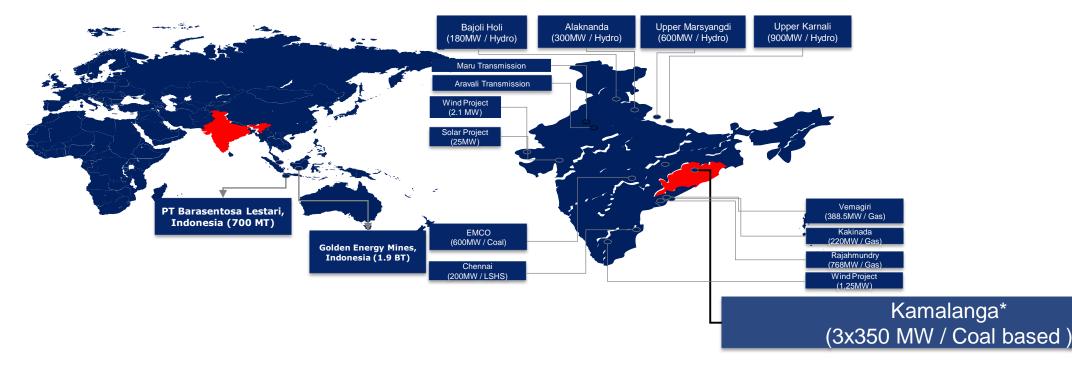
Swami Vivekananda Learning & Inner Excellence

We cherish the life long commitment to deepen our self awareness, explore, experiment and improve our potential

Mother

Social Responsibility Anticipating and meeting relevant and emerging needs of society

JRD Tata


Entrepreneurship We seek opportunities they are everywhere

1. GMR AT A GLANCE

GMR Kamalanga Energy Limited is a wholly owned subsidiary of GMR Energy LTD and is a step down subsidiary of GMR Infrastructures LTD.

Products/Businesses of organization : Electricity Generation

Capacity : 1050 MW - (3x350 MW)

Operational since: April 2013.

FSA

GKEL is having FSA with MCL

- FSA LINKAGE 2.14 Million MT
- SAKTI LINKAGE 1.50 Million MT
 WATER SOURCE 24 Cusec BRAMHANI RIVER

PPA

- DISCOM BIHAR PPA 260 MW 25 Years
- DISCOM HARYANA PPA 323 MW -25 years
- DISCOM GRIDCO PPA 247 MW 25 years
- BALANCE POWER -150 MW

Plant Facility

- BOILER HARBIN
- TURBINE Donfang Turbine company
- GENERATOR Donfang Electric company
- BFP Turbine Donfang Turbine company

2. ENERGY MANAGEMENT POLICY AND CERTIFICATES

28/05/282

	GMR KAMALANGA ENERGY LIMITED
1999 (1999) (1999) (1999 (1999 (1999) (1999 (1999 (1999 (1999 (
6	VILLAGE KAMALANGA, CITY- DHENKANAL - 799 121, ODISHA, INDIA.
icati	Bureau Verites Certification Hoiding SAS – UK Branch certifies that the Management System of the above organization has been audited and found to be in accordance with the requirements of the Management System standard dataled below.
出し	Standard
5	ISO 50001:2018
ŭ	Scope of certification
Bureau Veritas Certification	Orginal cycle start dete: 20 May 2020 Days dete of previous cycle: Not Applicable Days officiation Audit date: 20 May 2020 Description of previous cycle: Not Applicable Description of the continued stafficion of the contract staffic cycle start date: 20 May 2020 Dask of the continued staffic cycle start date: 20 May 2020 Dubled to the continued staffic cycle start of the organization for Management System. Not existing applicable. Certificate explexe cyr: 19 May 2023 Certificate No: IND20.2466/ENU: Venion: 1 Newton date: 20 May 2020
2	June June Applying the back of a CONTACT- Life Banch Applying the CONTACT- Life Banch Made CONTACT- Life Banch Made CONTACT- Life Banch Made Contact Life And Annual Contact Annual Contact Annual Made Contact Annual Made Contact Made Co

To Adopt Energy efficient and clean technology

To Minimize the losses

To Comply legal and other requirements

To allocate resource

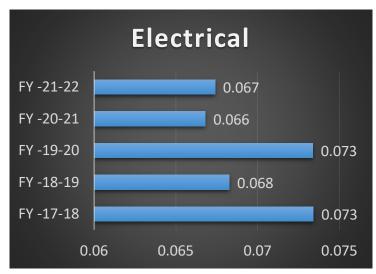
To frame Roles and responsibility

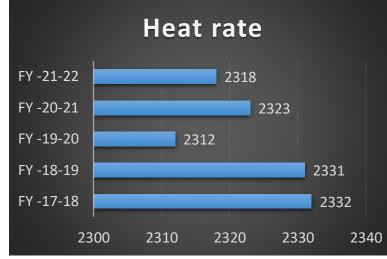
To purchase energy efficient product and Regular Energy audit

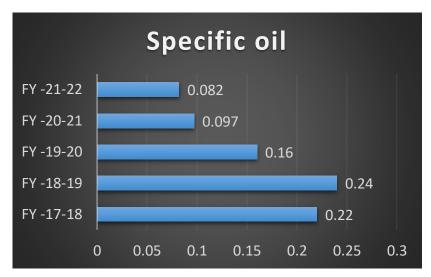
5

3. ENERGY CONSUMPTION OVERVIEW FY 2021-22

Annual Generation	: 7530.21 MU
PLF	: 81.87 %
Availability	: 90.89 %
Gross Heat Rate	: 2318 kcal/kwh
Auxiliary Power	: 6.74 %
UHR (UNIT 1/2/3)	: 2323/2317/2316 Kcal/kwh
BOILER EFFICIENCY	: 87.13/87.15/87.08 %
DM Water consumption	: 0.16 %
Raw Water Consumption	: 2.15 M3/ MWh generation
Specific Oil Consumption	: 0.08 ml/ KWh generation

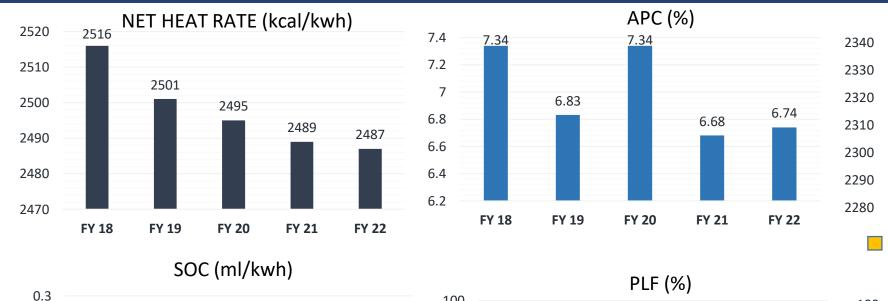


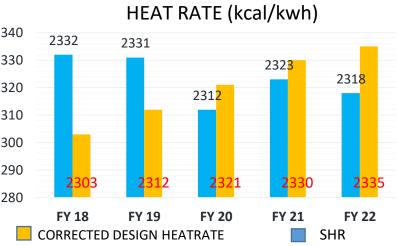


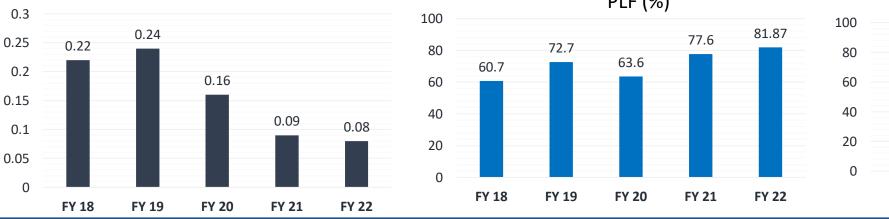


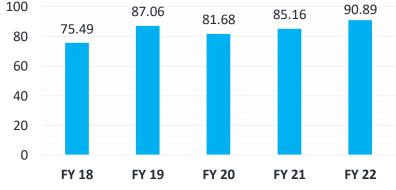
4. SPECIFIC ENERGY CONSUMPTION LAST 3 YEARS.

	Specifi	c energy consump	tion	Improvement in s	specific consumptio	n w.r.t base line
Financial	Electrical	Thern	nal	Electrical	Thermal	Oil
year		Heat rate	Specific oil			
	Kwh/kwh gen	(kcal/kwh)	(ml/Kwh)	(%)	(%)	(%)
FY -17-18	0.07341	2332	0.220			
FY -18-19	0.06826	2331	0.240	7.015	0.043	-9.091
FY -19-20	0.07338	2312	0.160	0.041	0.858	27.273
FY -20-21	0.0668	2323	0.097	9.004	0.386	55.909
FY -21-22	0.0674	2318	0.0820	8.19	0.60	62.73

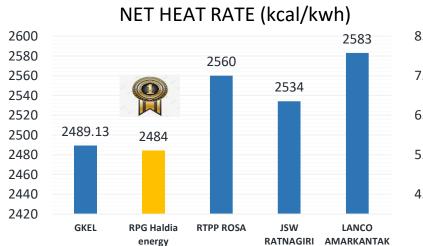


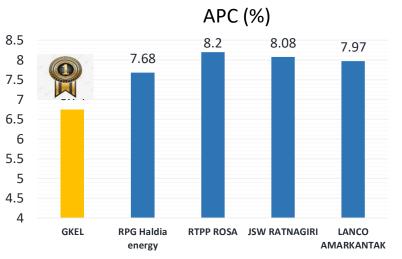


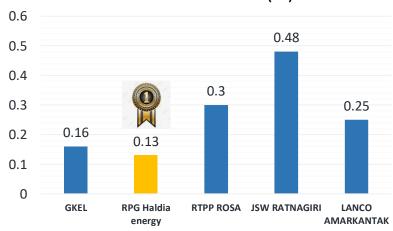



5. BENCHMARKING OF KPI 5.1 Internal Benchmarking

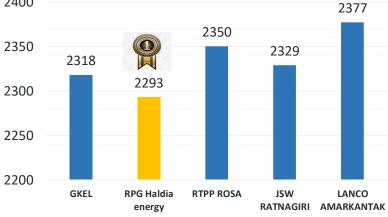
AVAILABILITY (%)

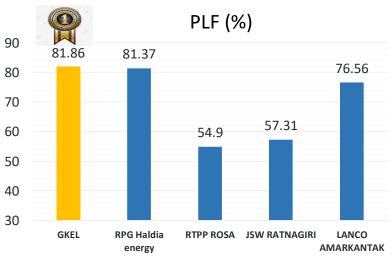



NOTE: Heat rate in compared with corrected design heat rate with aging (as per OEM curve). Increase in heat rate is due to drop in HP and IP turbine efficiency and increase in APH O/L temp. which to be addressed in next overhauling cycle

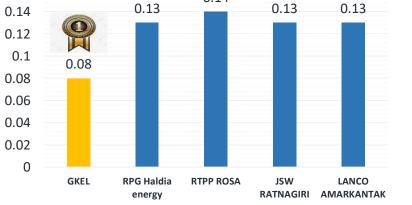

National Award for 2022 Excellence in Energy Management **5. BENCHMARKING OF KPI** 5.2 External Benchmarking

23rd




DM water (%)

HEAT RATE (kcal/kwh)



2400

SOC (ml/kwh) 0.14

0.16

GKEL is equipped with TDBFP so benchmarking done with Net heat rate.

5. BENCHMARKING OF KPI 5.3 Road Map to create benchmarking

FUTURE TARGET FOR APC:

- GKEL presently achieved 5.83 % APC at full load against 7.55% design & normative APC 6.25%.
- GKEL aims to achieve 5.75 % by 2023.

External and internal benchmarking

- Set Energy objective and target
- Identification of EC project
- Budget allocation EC projects
- Establishment of better monitoring system
- Action plan development

Deviation analysis

- RCA for each deviation
- Monitoring CAPA through distal ATR
- Project effectiveness study
- Sustenance

MONITORING

PLANNING

MOTIVATION

EXECUTION

Prioritization of project

- Implementation of action plan.
- Adopt best practices of sector
- Training and awareness.
- Strengthening green supply chain.
- EC action beyond the boundary

- Reward and recognition. In business level and group level
- Work shop for energy conservation idea.
- Appreciation in forum

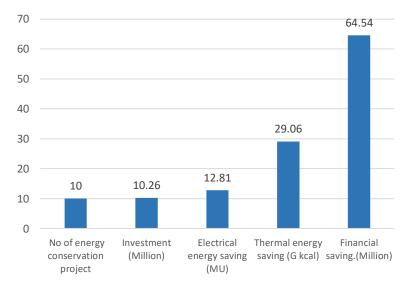
FUTURE TARGET FOR HEAT RATE:

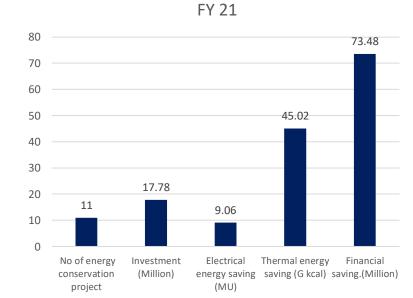
- GKEL presently achieved 2305 kcal/kwh Heat rate at full load against 2227 design.
- GKEL aims to achieve 2300 Kcal/kwh by 2023 considering aging of machine.

5.4 WAY FORWARD PLAN FOR ENERGY CONSERVATION .

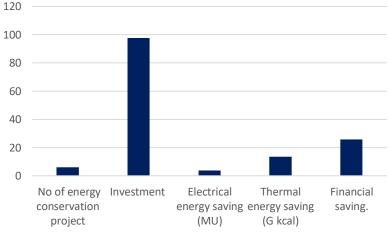
SL No.	Description of energy conservation measures	Investment (Rs in Million))	Annual Electrical Saving (Million kWh)	Benefit due to heat rate improvement (Kcal)
1	HIP overhauling	6		13.36
2	APH Basket removal	4.5		10.47
3	APH additional basket addition in unit	1.728		8.8
4	Replacement of burner, Boiler tube buffing , Soot blower effectiveness			2
5	IFC installation in compressor	5	1.022	
6	Replacement of RC valve to eliminate passing.	0.5		10
7	Seal air fan VFD installation	2.5	1.028	
8	Sonic soot blower installation in unit 1 & 2	2.2		0.77
9	ESP hopper power consumption optimization	0.5	0.96	
10	Coro coating of pump CW Pumps	0.25	2.63	
	Total	23.178	5.64	45.4

• GKEL tested unit operation at 40% Loading Factor for assessment of Heat rate & APC degradation and working for optimization of Heat rate , APC , stable operation and smooth ramp up.





6.ENERGY CONSERVATION PROJECT LAST 3 YEARS


Financial Year	No of energy conservation project	Investment (Million)	Electrical energy saving (MU)	Thermal energy saving (G kcal)	Financial saving. (Million)
FY 20	10	10.26	12.81	29.060	64.54
FY 21	11	17.78	9.06	45.02	73.48
FY 22	6	97.7	3.79	13.52	25.71

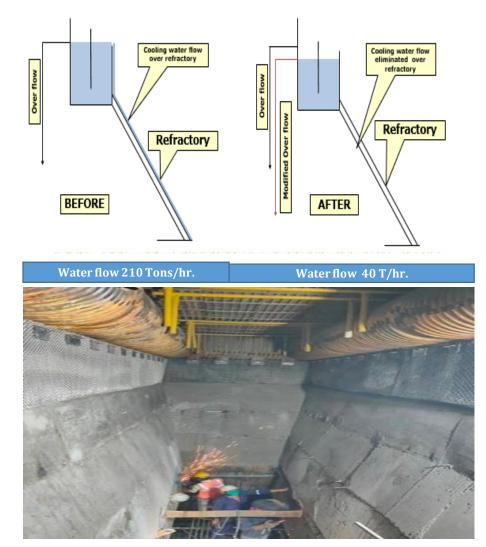
FY 20

7.INNOVATIVE PROJECT IN FY 22

Reduction of Specific Raw water consumption

- Why innovative: LC cement is adopted for Boiler. In initial design, Water is continuously overflowed from seal through to refractory.
- Savings achieved: Reduction of monthly allocation quantity from 24 Cusec to 20 Cusec
- Financial saving achieved: 2.91 Crore
- Investment : 9.2 Lacs
- Replicability : Yes

IDENTIFICATION OF OPPORTUNITY


Specific raw water consumption reduction is a strategic objective of GKEL for sustenance concern. Raw water cost also has significant impact on O&M cost . Reduction of SRWC will aid Zero discharge , Raw water cost and auxiliary power consumption. With analysis it is observed that CT blow down is the most controllable contributor for Raw water consumption and Root cause for the Raw water consumption is Boiler hopper refractory cooling and it also disturbs the Water balance of AHP. This resulted in difficulty in maintaining zero discharge.

POSSIBLE SOLUTION

- Refractory metallurgy was changed to improved quality refractory
- refractory application Seal trough overflow line modified to eliminate cooling water
- SOP finalized and training provided to field operator

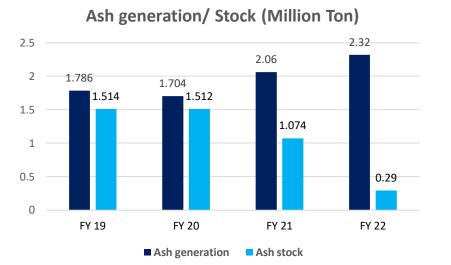
IMPLEMENTATION

Complete replacement of refractory

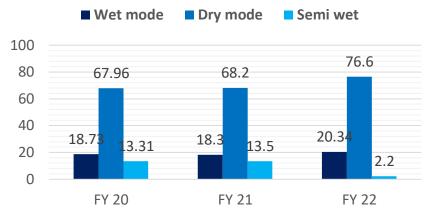
8. RENEWBLE ENERGY PROJECT .

SL no.	Projects implemented	Capacity	Type of energy	(Generation Million KWh)
01	Wind operated Turbo ventilator installed (188 nos.) on TG Building and hydrogen builing.	250 Kwh	Wind	1.44
02	Security hub power supply from solar panel.	129 watt	Solar	0.001

Turbo ventilators



Solar panel at security post



9.1 ENVIRNOMENT MANGEMENT - ASH UTILIZATION

Ash utilization in % 160 133.47 140 115.6 120 106.79 100.11 100 80 60 40 20 0 fy 22 FY 19 FY 20 FY 21

Ash handling modes (%)

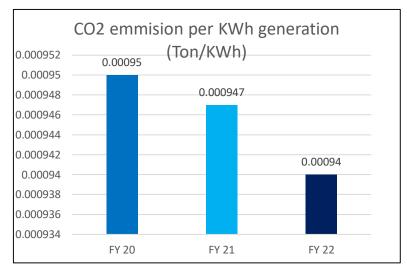
Areas of ash utilization in MT

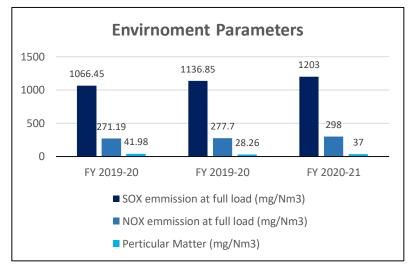
Modes of Ash Conveying

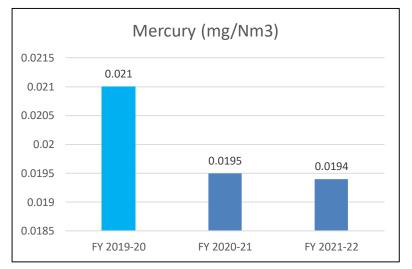
- Dry Ash conveying System with storage Silos
- Bottom Ash slurry conveying system with hydrobin water decanted system make it semi dry condition
- HCSD systems and ash pond with Ash water recovery System

9.2 ENVIRNOMENT MANGEMENT - ASH UTILIZATION

In house Bricks/blocks making unit – products is being sold to other and also used in-house for repairing & construction work of Township.

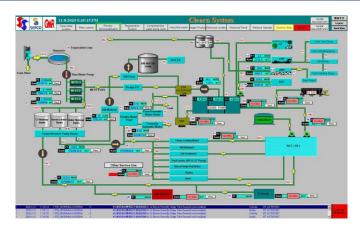

Supply to NH Authority for road construction project through trucks and bulk discharge through rakes


Supply to bricks/block and cement manufacturing unit by bulkers

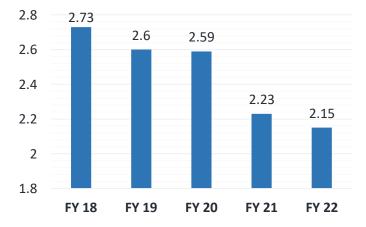


9.3 ENVIRNOMENT MANGEMENT – EMMISSION

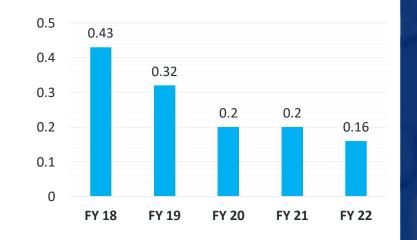
Best Practices for Emission control


- Low NOx Burner and Over fire damper operation.
- Periodic checking of SADC for combustion control.
- Improvement in Fineness of coal particle
- Periodic replacement of Bag filters to control PM.
- Oxygen optimization for NOx control.
- Periodic monitoring of stack parameters.
- Daily ESP field healthiness monitoring.
- Online CEMS/ CEQMS is installed and data transmission to SPCB and CPCB
- Daily review of emission by EHS team

FGD installation is process and it will be commissioned by Dec -2023 as per MOEF direction.



9.4 ENVIRNOMENT MANGEMENT - WATER



Water SCADA for Online Monitoring

Modification of drift eliminator

Best Practices for reducing water load

- Replacement of drift eliminator .
- Water SCADA implementation .
- Rain water Harvesting by Rain water pump.
- Recuse of MFST blowdown
- Reduction of DM water.

Best Practices for waste water utilization ETP and STP for treating the water and used in

- Makeup to bottom ash handling system.
- Make up to Fire fighting storage tank.
- Truck wheel washing spray system.
- Ash Conditioning during loading .
- Boiler seal trough charging.
- Floor and road cleaning.
- Coal yard sprinkling
- DS system in CHP.
- Horticulture.

RAW water(m3/MWh

DM WATER

9.4 ENVIRNOMENT MANGEMENT – WATER CONSERVATION OTHERS PROJECTS

Recovery of rain water, floor cleaning water by connecting to storm water drain and automatic start stop facility provision rain water harvesting pump based on sump level.

Relocation of underground utility pipes to over ground to reduce underground water leakages.

Reuse of Mixed flow sedimentation tank blow down water back in to the system

Installation of automatic level transmitters in all utility water tanks inside the plant and associates living area.

Utilization of Guard pond Waste water in Boiler, ESP area floor cleaning, DFDS System, Coal pre wetting system, and fog cannon instead of service water

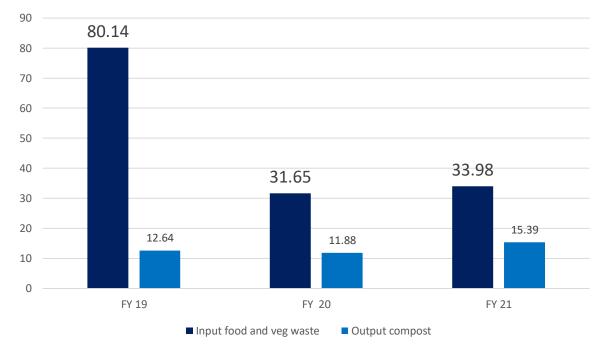
Utilization of township STP waste water for gardening purpose after treatment.

All Overhead tank level switch installation

FOG Cannon

Automation of Rain water harvesting pumps

Waste water utilization


9.5 ENVIRNOMENT MANGEMENT – WASTE UTILIZATION

1. Organic waste is being converted to manure through Mech bio-digester and utilized in organic farming and horticulture

Solid waste management(MT)

10. GREEN SUPPLY CHAIN MANAGEMENT .

Started Bulk ash disposal by rake Spare part development and as 2nd plant in ER thus reducing truck transport emission.

- 56574 tons transported
- 1885 truck eliminated
- 3.65 lakh km
- 125 kl Diesel consumption
- 333 TCO2 by truck
- 106 TCO2 by rail
- 227 TCO2 Net reduction

indigenization (SPDI) of 98 Nos of item.

development Local vendor reduces energy consumption in transportation and carbon foot print in its overall product life cycle

100% rake materialization reducing truck transport emission and energy consumption

E cart for goods transport inside plant which reduced 1.82 kl diesel consumption .

23rd National Award for 2022 Excellence in Energy Management

Login

LOGIN

11. BEST PRACTICE – NON ENERGY EFFICIENCY

0

CFT - Turbine & Auxiliary Feed water ,Condensate system ,Hydrogen system

MEMBERS : kaushik pradhan asutosh anshul dubey sreekanth/chenna sanketh

BIBHU KHARAVELA ROUT

SIX SIGMA PROJECT

- Generation loss minimization by repeated failure analysis
- Life enhancement of frequently failing components
- CHP belt loading factor improvement
- Bottom ash quantity reduction
- Heat rate improvement
- Non-moving spare inventory reduction

RELIBILITY ENGINEERING

ABIRAL—A reliability improvement program initiated where 200 Nos of reliability issues identified under banner of ABIRAL. 20 no's of CFT formed to asses all processes.

1. Repeated failure analysis

Business

- 2. Critical spare management
- 3. Identification of process bottleneck.
- 4. RCA trough Six sigma approach.

GMR KAMALANGA ENERGY LIMITED GMR

USE OF DIGITAL PLATFORM

GAR

 Compliance management, EHS management, Management Review & Sustainability reporting.
 SARATI portal for internal audits .
 Idea Factory for registration of individual idea
 SIP digitalization for change management
 ATR digitalization for tracking of CAPA.

11. BEST PRACTICE – NON ENERGY EFFICIENCY

AFFORESTATION

GKEL has fulfilled statutory requirement by effective plantation in 335 Acres

- 1. Plantation of 3.9 Lakh sampling
- 2. Mass plantation in plant premises
- 3. Seedlings distribution to community
- 4. Planation in community.
- 5. 35 Acres landscape development
- 6. 2Acres of organic farming

CSR

Web page and app developed named "krusaka bandhu" to facilitate farmers on.

- 1. Aggregation on information on various government schemes and links.
- 2. E-resources for farming like Govt. newsletters, notifications, E-books.

Our whole and sole moto behind developing this APP was to utilize basic modern digital technology for the welfare of Farmers in society, especially those who belongs to the deprived class towards this humongous development in field of digital world. We tried to link these people with digital platform in every sense that was possible for us to.

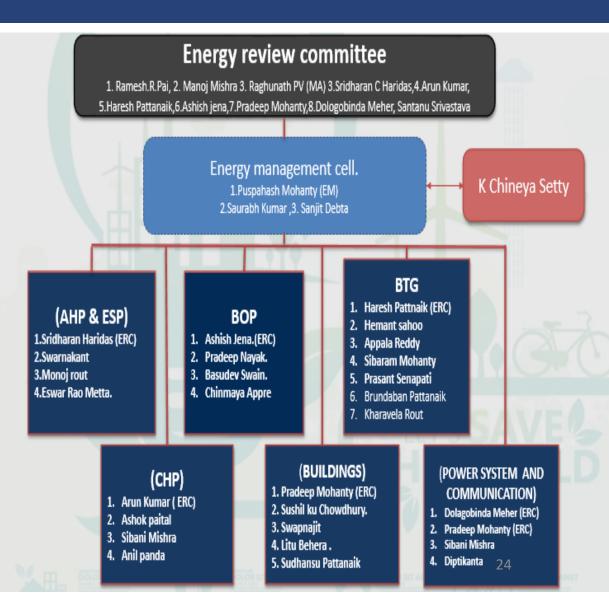
ASSET MANAGEMENT

1.SAP based maintenance
2.Preservation methodology
3.Min max process
4.Condition monitoring
5.Regulatory compliance
6. Waste management
7. Certification of ISO 55001

****38 =

nstalled

12. ENERGY MANGEMENT SYSTEM .


12.1 ENERGY MANGEMENT CELL

- Energy review committee : For overall review & support
- Energy management Cell : For Monitoring and developing
- Zonal members
- No of zones
- Involvement -
- Competency-
- Review

- : For field level execution .
 - : 6 zones better targeting and monitoring
- : 31 Nos of employees associated.
- : 7 BEE Certified energy auditors
- : Energy review chaired by plant head

Objective of EMC to

- Monitoring of specific energy consumption area wise
- Deviation analysis of SEU and objective
- Preparation of action plan.
- Identification and cost benefit analysis of ENCON projects
- Awareness. And Training
- Ensure sustenance action plan.
- ISO 50001 standard requirement.

GAR

12. ENERGY MANGEMENT SYSTEM. **12.2 ENERGY MONITORING AND MEASUREMENT**

	Market - Change	wa Dantscard 😑 Pla	rola 👄 Sanarator	Capability Currie						
	Auxiliary Power Cossumption									
arre	UNIT	UNIT 1	UNIT 2	UNIT 3	STATION					
ENERATION	MW	293.8	285.98	266.56						
T DIPORT	MW	271.82	267.63	245.56	i - 17					
NE EXPORT	MW	268.65	270.75	245.82	0.00					
PC IN %		7,18	7.12	7.38						
PC IN MW	MW	21.08	20.36	19.65						
PC- MAIN PLANT	KW	11646.54	11232.87	10580.63	334					
ID FANS	KW	2814.01	2815.56	2443.97	71					
RA FANS	KW	1865.19	2099.78	2548.58	55					
FD FANS	KW	\$12.31	\$59.63	436.87	1					
CONDENSATE EXTRACTION PUMPS	KW	601.06	549.2	981.93	21					
FEED WATER PUMPS	KW	293.74	387.68	375.5						
MILLS	KW	1926.58	1701.29	1745.71	51					
LV TRANFORMER LOAD	ĸw	626.7	628.8	633.12						
ESP LOAD	KW	772.4	805.64	710.79	22					
COMMON TRANSFORMER LOAD	ĸw	62.65	24.68	3.37						
HVAC	KW	449.96	345.62	542.47	1					
LIGHTING LOAD	KW	16.92	14.45	18.98						
					1					

ONLINE POWER CONSUMPTION

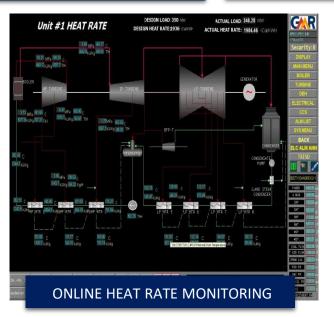
GMR KAMALANGA ENERGY LIMITED COMPARATION WITH POST OVERHAULING FULL LOAD

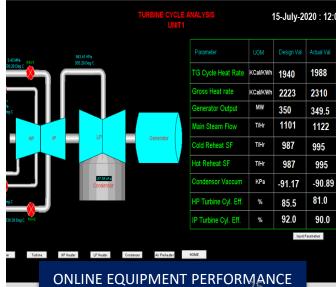

GNR

AUXILLE	RT POVER CON	SUMPTION	REPORT	FOR AU	enti -s	150				WILL SPECIFIC POWER TREND MONTH
			_						_	
START HATE AND HATE	HIST LINE 19-28	1548-263 6		1007	ARK.	NHT .		Rect	19	
IT THE	(23	135	- 08	- (1)		- 38	- 265	- 280	- 285	
IT 2 MPC	1.45	121	134	LN	129	144	280	7.98	/#6	×
m100C	131	180	1.01	1.24	LC	1.64	788	7.88	7.24	
ation and have been been the star	111	1.8	LIE LIE	2.90	128		228	726	723	
El Unidag Sailer		1.83	2.45	E 28		- FI41	101	7.0	22	
ff 2 hading faster		5.8	246	8.63	3.6	116	- 101	2.82	8.5	
HT 2 hading Faster		821	11.16	5.21	iLC.	2.61	8.24	1.41	2.6	
10100 Indias Eatler		1.6	21.78	6.51			1110	1.24	124	
NUMBER OF CONTRACT OF CONTRACT										
£		82	21.15		- 58C-P		- ex.e	CTL1	SE.C	
ATTAN AND REATION/ACT		13	5.0	1123		2.8	- 22.44	11.75	2.5	
0 JAT 10 10 (1		6.5(61.12	75N				10124	26.25	SPECIFIC SAM POINTS THERE WONTH
,		2.0	111	10.01			191.24	- 9UN	0130	SPOUPL MARPUNDS INDIA WONTH
7		2.5	2.46	12.31		12/10	4236	10	31	
v		4.5	4.51	10.10		33	15.05	3734	77.40	
FTER MAR CREMING		1.2	- 410	12.10	41.2	2.14	1111	-92.40	222	
HAMACISERS		1.0	3134	32.51	114	2.0	70.22	204		
NEDI		13	- 13	- 211		- 935	- 836	11.74	7.65	
CET (TAASACTING		0.1	CI 12	20.01		18.24	291,21	12174	10121	
ene:		68.6	- 01(1)	13.0	10426	10.4	1111	10174	78.0	
				_						
NUMBER OF CONTRACT										
v	#20	6.01	632	6.61		125	6.84	1111	636	
CETTER AND REALITERANCE	10	124	128	221	50	144	3.96	- 211	100	
1 AT 10 AC	3.20	2.01	23.59	3.63	1.0	2.81	111	3.65	2.85	
9	64	245	150	1.72	(9	151	114	- 00	422	
"	10	10	1.4	100	6/2	- 22	598	633		
	2.04	2.80	215	2.55	2.79	134	2.54	2.00	185	
ALLE VER CREMCH.	LIN .	121	141	:20	13	1/4	2.56	114	2.65	FEED WATER AND CONDENSATE SPECIFIC POWER
AMACINES:	200	201	10	2.61	112	188	228	2 2.62	- 122	
WED?	10	121	120	1.41	15	121	1.0	135	121	
ACUE (TARGECOMP)	20	121	948	725	152	- 125	- 644	157	121	
when	0.N	2.0	11.18	1.1	11.0	1.1	11	1.1	1.1	
TC APPE 2 STATE										
d'autre	3.5	3.51	- 128	326	12		925	3.4	125	
v aple e	2.07	2.5	105	2.5	627	1.9	2.34	122	2.5	
winingely.	10	- 31	- 128		119	15	411	- UI	191	
7	10	1.21	111	121	135	:21	7.85	- un	785	
the mattery promotion find	10	1.01	10	1.01	1.00	124	331	111	124	
eta:	200	4.8	11.18	- 1.0	11.0	4.0	- 110	111	1.1	
IN PROVINCEMENT OF STREET ME										
			_		_					
CODE DOUBLE PORTS, MDD/Test	1.07	1.3	145	121	L/E	185	128	125	125	
CODE ON PORTA IDIA Conf	55	2.26	23.80	1.24	210	1.41	2.40	2.45	325	
CONCIMUM IN WRITE COOL AND AND	107	1.41	110	128	124	42	5.87	- 04	429	
			_		_	-	-			OF A D AF PICK YOR CHIMPIN
COTT ON ON PARCE ADD/Lad	13	101	1.20	141	1.2	141	124	143	141	OF A CREPTICIC CARDINATION
TOTIC IN PARTY IDI/Tor	80	2.31	1115	1.41	1.0	2.75	2.15	2.0	2.25	
CONCIMUTE INFORMED COCK, ANNAUNC	687	10	140	1.21	115	(22	121	151	134	
					_	_	_	_		
CONC DOUBLE PARTS, MISS/Test	10	1.5	226	181	US	181	131	151	167	
turn (M Press, D)/Inf	5.8		2/1	2.11	3.44	1.44	E.65	2.80	3.85	
CONCIMULTING PROFES COOL ADDIVIDUAL	687	14	141	CIII	1.00	- 12	426	1.0	142	
and and and present father shall fat						-				
informer analysis #10 mil	8.00	3.51	415	3.51	3.0	54	2.0	1123	124	
AND ATTEND SAFCING CATACITY OF AND THE				- 10		175	- 64	- 10	- 10	

AREA WISE SP ENERGY ANALYSIS




SEU DEVIATION ANALYSIS



	'	URMAT NO : GREL/18/US&E/003/001						OF UNIT 8	
	5.8	Parliadar	ROH	Design		Oct-19		-Har-19	
	1	Grans keal Bale				2 Annez Full and		01 huurz Full Lugd	
		Locating Paulor (LP)	x	100	1	00.03		99.88	
	- K.	Deale skie Real Rais kaned as PLF	Keal/Kake	2223		2228		2228	
		Unit Heat Rate autout	Keal/Kalo		23	32.70	2	323.08	
	<i>k</i> .	TG Cyele HealRale	Real Kale	1940		2023		2020	
		Duller Efficiency	x	\$7.57		7.17		\$7.38	Cerr In His
	6	Difference [k-s]	Keal/Kake			94.48		94.98	_
		Castribution of Tarkine Inners in BBR	Real/Kake	•		5.68		\$\$.11	
	k.	Contribution of Anilor & Piping Loss in BBB	Realiticals	•	1	0.66	4	5.00	
	÷.	Reconcered from in BBB	X			1.86	1	1.#7	U
	1	Laure breaking of Tarkine							
		Talul Castrallukte Tarkiar Lasara	Real Kale			1.19	1.1	10.09	<
		No under Nable Lances (Apring, APAP Giller game, AP CV)	Kadillake	•		9.92		66.52	
GY		Corrected BBB (Will according of Tarkian analysifiable lass.	REARCH		23	0\$.26	_	311.47	
	2	Tarkiar Castrallable Lanara Bar Ta	8011	Design	Actual	Deviation	Actual	Deviation	
		HS Tragenslare	Deg C	537	540.6	0.00	540.0	0.00	
	- K.	HSP	Her	16.67	16.56	1.86	16.55	1.97	
	<i>a</i> .	EN Allemperation	TPR	9	84.3	8.79	42.6	4.36	ян.
		NEN Tempreslare	Deg C	537	543.4	0.00	530.6	3.41	
	6	RH Hillraper allow	TPH	0	12.1	4.63	0.0	0.00	Г
		Faul Feedbales Tray	Dag C	279	281.6	-0.64	281.0	-0.51	Г
	- K.	7	844	-91.17	-30.4	6.56	-91.0	0.86	Γ
	1. L	Talal Casleallable Tarkiar Laure as TBR.	Red	0.0		21.19		10.03	
		Turbine Controllable Losses				T	urbine C	ontrollable L	osse
		0.02 1.84	//G Temperature				(1) (1)		

FORMAT NO : GKEL/18/OS&E/003/001

THERMAL ENER MONITORING

12. ENERGY MANGEMENT SYSTEM .12.3 WORKMEN INVOLVEMENT THROUGH SGA .

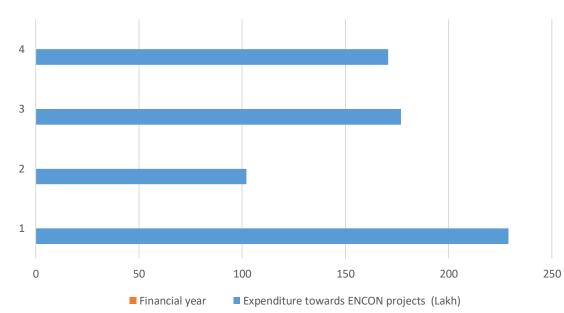
- 1. Half yearly Boiler and turbine insulation temperature survey.
- 2. Furnace pressurization test for air in-leakage identification.
- 3. PA duct pressurization test for air in-leakage identification.
- 4. Monthly high energy Drain passing survey.
- 5. Instrument and service air leakage survey
- 6. Furnace velocity mapping.
- 7. Compressor FAD testing.
- 8. Illumination study.
- 9. Ventilation system audit

-			E	lolie	Right	t Side				
Eleva										
69 mt	55	50	48	52	48	47	45	48	50	
C D		50		47	5.5					
62 mt	42	50	46	47	56	44	51	45	48	
ŀ										
52 mt	59	65	43	52	46	45	52	65	50	
48 mt	61	64	71	83	57	50	56	48	45	
1										
[
46 mt	61	59	61	63	58	63	52	48	69	
42 mt	62	65	130	64	48	72	52	40	65	
42 mt	62	65	130	6-4		12	54	-40	65	
40 mt	90	60	61	41	69	55	72	60	65	
38 mt	34	34	62	62	111	52	54	51	63	
ECO Zor										
30 mt	63	67	53	75	61	82	83	130	60	
24 mt	68	92	77	90						
22 mt	58	65	65	92						
22 1119	50	0.5		22						
20 mt	52	68	77	90						
18 mt	130	63	62	64						
15 mt	104	72	77	60						
12 mt	140	54	57	58						
12 mg	140	34	- 27	20						
9 mtr	60	80	75	70						
_										
		BOILE	K IN					/ F Y		
_										

	TURBINE DRAIN	PASSING S	URVEY
		Date	05.08.2020
	AUX HEADER DRAIN	I STATION (MIV)	
1	Aux header to condenser		>150
2	Aux header to condenser (steam trap)		>150
3	Aux header to ATM.		>150
4	Supply MOV drain to ATM		70
5	BFPT steam supply before drain to ATM	STATION	75
6	BFPT Steam supply drain (trap) to cond.		63
7	BFPT Steam supply drain to cond.		57
	Common drain to Atm		81
8.1	Atomising safety valve drain		53
	Atomising line drain.	6 MTR Behind the	43
	Interconnection MOV before drain	aux header	66
8.4	Interconnection MOV before drain		78
	BFPT STEAM DR	AIN STATION	
	CRH after mov (cond)(B)		>150
	CRH after mov (cond) steam trap(B)		65
	CRH after mov (ATM)(B)		58
	AST after NRV (cond) (B)		80
	AST after NRV (cond) steam trap (B)		115
	AST after NRV (ATM) (B) AST AFTER MOV drain (B)		81
7			84
7	AST header drain	_	73
7 8 9	AST header drain AST header after MOV (A)		73 55
7 8 9 10	AST header drain AST header after MOV (A) CRH header drain.	6 MTR	73 55 60
7 8 9 10	AST header drain AST header after MOV (A) CRH header drain. AST after NRV (ATM) (A)	6 MTR	73 55 60 61
7 8 9 10 11 12	AST header drain AST header after MOV (A) CRH header drain. AST after NRV (ATM) (A) AST after NRV (ATM) deam trap (A)	6 MTR	73 55 60 61 55
7 8 9 10 11 12 13	AST header drain AST header strer MOV (Å) CRH header drain. AST after NRV (ATM) (Å) AST after NRV (cond) ateam trap (Å) AST after NRV (cond) (Å)	6 MTR	73 55 60 61 55 67
7 3 10 11 12 13 14	AST header drain AST header after MOV (A) CRH header drain. AST after NRV (ATM) (A) AST after NRV (ATM) deam trap (A)	6 MTR	73 55 60 61 55

HIGH ENERGY DRAIN PASSING SURVEY

				U	PPER B	ANK LT	SH						
Hanger No	LHS Vall to 1st coil gap	1	5	10	15	20	25	30	35	40	45	RHS Vall to 1st coil	Average
Row A bottom	3.7	3.2	3.3	3.5	3.4	3.4	3.2	3.5	3.5	2.6	3.0	3.1	3.3
Row B bend top	0.7	1.3	0.6	0.9	1.0	1.1	1.2	1.3	1.2	- 1.1	11	13	11
Row B bottom	2.7	2.4	2.3	2.3	2.5	2.5	2.6	2.2	2.3	2.3	2.2	2.5	2.4
Row C	2.5	- 1.4	1.8	1.5	1.6	2.8	2.8	2.7	4.0	4.0	3.4	3.4	2.6
Row D	2.6	2.4	2.3	2.5	2.7	2.5	2.7	2.7	2.6	2.4	2.3	2.5	2.5
				MI	DDLE B	ANK LT	TSH						
Hanger No	LHS Vall to 1st coil gap	1	5	10	15	20	25	30	35	40	45	RHS Vall to 1st coil	Average
Row A	3.6	1.6	2.3	2.0	2.1	2.0	2.1	2.2	1.8	1.9	1.6	3.8	2.2
Row B	3.1	1.5	1.8	2.0	2.0	1.9	1.9	2.2	2.2	2.3	1.8	4.0	2.2
Dow C	25	12	29	19	24	24	22	24	24	2.6	18	27	2.4



13. BUDGET ALLOCATION .

SL No.	Expenditure towards ENCON projects (Lakh)	Financial year
1	229	FY-19
2	102	FY-20
3	177	FY -21
4	170.7	FY -22

Budget allocation w.r.t turn over = 0.05%

14.AWARD AND ACCOLADES

15. LEARNING FROM CII & OTHERS

GKEL participated in CII National level award for energy management in FY-21 and awarded as excellent energy management unit Which turns to be great motivational factor for work force towards energy conservation. It helped the organization in following aspects

Adoption of best practices in energy conservation

Adoption of best practice in environment aspects

KPI benchmarking

Motivations towards energy efficiency

National level recognition.

Employee engagement towards energy conservation

GKEL reviewed 50 Nos best practices from CII portal of various business and 02 Nos selected for implementation in which 1 project are completed and 1 project for further implementation

GMR KAMALANAGA ENERGY LTD

THANK YOU

We have rights to use national recourses but have no rights to waste it. Save energy save environment

